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Abstract

Validating character animation techniques has traditionally relied on human observers. However, more
and more researchers have started to develop methods to automatically and reliably assess their results.
This review tries to provide those interested a consistent selection of publications in the �eld that have
addressed the issue of virtual character assessment, structured in a meaningful manner. At the end of
the review, we identify two directions in virtual character assessment: proposing evaluation metrics and
procedures against other methods or ground truth data or observing thresholds and patterns to bring up
guidelines for developers who want to achieve a speci�c tradeo� between naturalness and computational
requirements.
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1 | Introduction

Character animation is used nowadays in various applications, for example: entertainment (movies,
games), medicine (treatment evaluations on musculoskeletal models), civil engineering (safety and secu-
rity in crowds behavior), and learning (interaction, sports, skills). Traditionally, a lot of work in this
�eld is done by animators and artists. Researchers have developed numerous techniques during the last
two decades to come to their assistance. The most popular means of validating these techniques was
by asking human observers their opinion on the outcome. However, more and more researchers have
started to develop methods to assess their results automatically and reliably. This literature review will
include a number of publications in the �eld that have speci�cally addressed the issue of virtual character
assessment, trying to provide uni�ed frameworks for comparison across di�erent methods.

We try to provide those interested a consistent selection of references structured in a meaningful manner.
The reviewed papers were chosen both to be relevant and recent. We have structured the contents in
seven chapters by trying to identify the main directions that have recently emerged from the wide topic
of computer animation. From the assessment point of view, we would like to put forward a classi�cation
based on the following points:

• Works that use visual perception either as a means to provide assessment guidelines on naturalness
and plausibility, in Chapter 2, or as a means to classify input data for further processing, in Sections
5.3, 5.4.

• Works that study motion feasibility, either by looking at kinematics, in Sections 6.1, or at the
compliance with the laws of physics, in Chapter 7

• Works that formulate mathematical rules and models to describe animation, and assess the outcome
in terms of how it complies with these rules and models in Chapter 4

• Works that learn the models that characterize di�erent motions from real life data, and compare
the outcome against ground-truth in Chapter 3, Sections 5.1, 5.2, 6.2, 6.3, and Chapter 8

For articles that proposed a method and evaluated it towards the end, the typical discussion �ow in this
review is �rst presenting the approach, then the means of evaluation and lastly the experimental results.
For articles that directly address virtual character assessment, we present the approach and the results.
Where possible, we try to comparatively present papers that focus on a similar purpose or use the same
background, but decide to take di�erent approaches.

At the end of this work, we will extract those papers that we considered to provide clear-cut assessment
metrics or guidelines.
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2 | Motion Naturalness

[Ren et al., 2005] distinguish three di�erent approaches for quantifying natural motion. The �rst one is
searching for the thresholds of perceptual plausibility, or when are humans able to perceive unnaturalness
in virtual characters. We will review the works of [Vicovaro et al., 2012] and [Hoyet et al., 2012] that fall
into this approach, in 2.1. The second one is proposing a set of heuristic rules (according to the laws of
physics) to govern joint movement. We will review some of these approaches in 7. The third approach
consists of employing learning algorithms, which can automatically determine if a motion looks natural,
based on ground-truth data. [Ren et al., 2005] proposed an alternative to this approach that we will
discuss next.

They built a model for natural motion that captured probabilistic dependencies between features across
time. First, they selected a statistical model for data variation in time from three standard techniques:
mixtures of Gaussians (MoG), hidden Markov models (HMM) and switching linear dynamic systems
(SLDS).

The statistical models were formulated as ensembles of statistical models, each accounting for modeling
dependencies between joints at di�erent levels: at low level (joints) - 8D feature vectors consisting of
joint angles and velocities for each of the body joints and one feature vector for the root consisting of the
linear and angular velocity. At middle level (limbs) - previous features were grouped for each limb, to
represent the aggregate motion of body parts. At top level, the full body pose (as joints rotation angles)
comprised the last feature vector.

Each ensemble statistical model was associated with a set of parameters and a likelihood function which
showed the probability of it generating an input motion. These parameters θi were used to compute a

naturalness measure for a motion as si = logP (D|θi)
T , where D was the motion sequence and T its length.

To exemplify, the likelihood function, namely the distribution of the body poses and velocities, was
represented with a mixture of Gaussians in the HMM. The parameters θi of the HMM included mixture
weights for each hidden state and the mean vectors and covariance matrices of the Gaussians.

Then, the model parameters were �tted using natural human motions as training data (over one thousand
trials consisting of locomotions, physical activities, environment interactions, subjects interacting and
other common scenarios), by calculating the mean µi and standard deviation σi.

Last, each new input motion was attributed a score that measured its naturalness as s = mini

(
(si−µi)
σi

)
,

with i iterating through all the feature vectors.

In the experimental phase, the three statistical models were trained on the motion database and a
number of natural and unnatural motions were tested against the method. The unnatural motions were
obtained in a number of ways: by editing motion capture sequences in Maya, by keyframing motions by
an experienced animator, by introducing noise, by introducing bad transition according to a commonly
accepted metric and by using insu�ciently cleaned motion capture data. The best performance was
achieved by SLDS with 82% correct classi�cation of natural motions and 84% correct classi�cation of
unnatural motions, then by HMM and MoG.

A user study was also conducted. Participants were asked to watch approximately half of the motions
used in the previous experiment and decide their naturalness by answering with yes or no. The motions
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Chapter 2. Motion Naturalness 3

were displayed in random order, for each of the participants. Results showed that the judgment of the
human subjects outperformed all the statistical models, leaving room for improvement and allowing for
a better insight of where the models performed poorly.

2.1 Perceptual Plausibility

[Hoyet et al., 2012] studied the level to which humans were sensitive to three types of anomalies in virtual
character interactions (pushing, in this case): timing errors, force mismatches and angular distortions.

A �rst set of experiments, called baseline experiments, was designed to reveal whether participants could
perceive �ve di�erent force levels. The experiments showed that not only the �ve di�erent force levels
were distinguishable, but that also viewing only the character that pushed or the character that was
being pushed was enough to classify the force intensity. The character that was being pushed, or the
target, was shown to convey the most reliable cues in this respect.

Next, the three anomalies mentioned above were looked into separately. To study the timing errors, the
motions were altered so that the reaction of the target would be early or late with respect to the original
contact time. Both cases were found to be perceived in an equal manner, while timing errors of over 150
ms were found to be acceptable in less than 50% of the trials.

To test the e�ect of force mismatches on perceived naturalness of the pushing motion, two target motions
and one source motion were selected for every force level and every push direction (seven in total).
The motions were altered by introducing mismatching between the target and source force of zero to
(plus/minus) four levels. It was found that the alterations were perceivable and that over-reactions were
more tolerated than under-reactions.

Angular distortions were applied in four di�erent steps from 0◦ to 67◦, applied from clockwise directions
on the right side of the target and counterclockwise directions on the left side of the target. One source
motion and one target motion for each of the seven captured directions were displayed. It was found
that the larger the distortion, the motions became less acceptable.

This study highlighted the importance of anomalies present in pushing motions over plausibility of the
motions, and by detailed experiments provided a number of guidelines regarding the extent to which the
respective anomalies were acceptable.

[Vicovaro et al., 2012] modi�ed throwing motions and studied the thresholds at which human viewers
could tell that the motions were modi�ed. Experiments were designed according to the psychophysical
approach and the staircase method [Cornsweet, 1962], which was a suitable procedure to identify thresh-
olds by displaying the motions around the threshold for a particular observer. An ascending staircase
meant that the displayed throws were natural at the beginning, then modi�ed in small steps until the
observers perceived them so. Then the inverse process took place, reducing the modi�cations until the
motion looked natural again. This procedure was called "up-down". A descending staircase meant that
the �rst throws were bluntly altered and then the anomalies were reduced until the motions looked nat-
ural. The same "up-down" procedure was applied. To avoid participants from anticipating the next
throw, the trials from several staircases were interleaved, as to appear random.

Overarm and underarm throws of a tennis ball were displayed such as the viewers could clearly evaluate
all the phases of the throws. The speed of the biological throwing motion and the ball release velocity
were manipulated accordingly using dynamic time warping (DTW). The participants were asked which
animations were natural or modi�ed. The results showed that the subjects were more sensitive to slowing
down throws than to speeding them up, especially for underarm throws. Also, it was indicated that DTW
could be used to increase the throwing distance to a large extent by speeding up the throw, and to decrease
the throwing distance of an underarm throw only by a small amount.

In another experiment, a physical mismatch was introduced by only modifying the ballistic motion. The
preparatory motion remained unchanged. The horizontal and vertical components of the release velocity
were altered in turn. It was found that the participants were sensitive to these physical mismatches, as
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the preparatory motions provided enough information for the observers to anticipate the trajectory of
the ball after release. Participants were more sensitive to modi�cations of the horizontal component in
overarm throws and of the vertical component in underarm throws. An increase of the throwing distance
of maximum 40% in underarm throws was found to be acceptable.

2.2 Rendering Acceleration Techniques

Another subject that we will review here is the level of naturalness in crowd simulation. Crowd simulation
is a computationally expensive process, so e�orts are being made to reduce the number of calculations, in
order to achieve real time display rates. The most exploited area for this purpose is graphics. Research
is being done on how to reduce the number of polygons sent to the graphics processing unit (GPU) to
display crowds in real time, but to preserve realism. The main acceleration techniques for rendering
are visibility culling methods, level-of-detail methods (LOD) and image-based rendering (IBR) [Tecchia
et al., 2003, Rodriguez et al., 2010]. Some perceptual studies, [Hamill et al., 2005, McDonnell et al., 2005],
have determined when and where these techniques are appropriate. We will review a number of articles
that employ these techniques and the extent to which they preserve visual realism in the following.

To introduce IBR, we will brie�y present the work of [Tecchia et al., 2003]. They used IBR to reduce
the amount of rendered geometry in a large virtual environment populated with virtual humans. The
principle of this method was to replace the polygonal representation of virtual humans with 2D images,
called impostors, when the characters were far enough from the viewpoint. Impostors were precomputed
in this case, by using a horizontally and vertically sampled hemisphere around the virtual character and
by exploring the symmetry of the human body. In other words, 2D images of the character were taken
with a camera whose �eld of view was restricted by the hemisphere sample. The best perspective to be
displayed at runtime to match the viewpoint was chosen such as to minimize the popping e�ects. These
e�ects were the main artifacts that appeared in this method, due to switching between perspectives.

To enhance realism, but to keep the number of models and of their respective impostors low, diversity
among the characters present in the scene was ensured by coloring di�erent parts of a model with di�erent
shades. Lighting and shadows were also addressed, to reduce artifacts and preserve visual �delity.

Experimental results showed that the method was scalable with the number of virtual humans rendered
in the scene. More, users reported that the visual quality was similar to normal polygonal models as
long as they were not approaching the characters too much. However it was not mentioned what was
the distance at which impostors played a convincing role.

To determine this distance threshold, [Hamill et al., 2005] conducted a perceptual study on impostor
representations both for virtual humans and for buildings in large scene. They also evaluated how the
model representation a�ected motion perception.

The experiments were designed according to the psychophysics approach, and implemented by using the
staircase procedure. They set out to �nd the Point of Subjective Equality (PSE), that gave the threshold
at which participants were able to tell two stimuli apart, and the Just Noticeable Di�erence (JND), that
represented the smallest di�erence in intensity required for a subject to distinguish between two stimuli.

Virtual humans impostors were calculated similarly to [Tecchia et al., 2003]. Tests were carried on the
authors' previous implementation of this technique in [Dobbyn et al., 2005], where the distance threshold
at which impostors ought to be switched with the polygonal representations was formulated as a Pixel
to Texel ratio (number of screen pixels occupied by an image).

First, the experimental results revealed that users were able to discriminate between impostors and
geometric models when displayed side by side. However, they were not sensitive to small changes to the
pixel to texel ratio at which the impostors were displayed. Next, switching between representation for a
model facing the user and moving towards the screen was detectable when the distance was greater than
the pixel to texel ratio of 1.4 : 1. Participants were also sensitive to subtle changes in the pixel to texel
ratio at which the popping occurred.
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Further, based on the belief that sensitivity to motion changes could be a good metric to evaluate
visual �delity, an experiment was designed to assess the e�ect of model representation on human motion
perception. Arms, torso and legs motions were varied separately. Separate groups of participants viewed
either the geometrical model, or the impostors. It was found that for leg motions, perceiving variation
was similar in both cases. Perceiving small arm motion variations was easier when viewing impostors
rather than the original models. Also, for the torso, participants noticed variation in motion faster with
the impostor, than with the polygonal models.

With these results, the authors suggested that impostors were perceptually equivalent to geometrical
models in the case of perception of human motion.

Building on the previous work, [McDonnell et al., 2005] brought into discussion the low level geomet-
ric meshes (LOD approach). Similar experiments were conducted to assess the e�ciency of low level
geometric meshes compared to that of the impostor representations.

The perception of motion test revealed that the motion variations were perceived similarly, regardless of
the representation, but that the motion of the impostors was closer to that of the original model than
that of the low resolution model.

The pixel to texel ratio for distinguishing between the impostor and polygonal model was re�ned in a
subsequent experiment and found to be closer to one-on-one, namely 1.164 : 1. A similar experiment was
carried out for the LOD approach, to determine the percentage of vertices in the low resolution model
that triggered the observable di�erence between this and the original representation, for three di�erent
distances. At the closest distance, a mesh containing 36.4% of the vertices was equivalent to the original
one. At the same pixel to texel threshold for impostors, a mesh represented with approximately 27.5%
of the vertices was equivalent to the high resolution mesh.

The results of this research provide valuable guidelines of when realism can be achieved by using rendering
acceleration techniques.

The level of detail approach can also be explored at di�erent levels, other than the geometric level, like
it was done for example in [Rodriguez et al., 2010] who managed the level of detail also on skeletal and
behavioral levels, complementary to a modi�ed culling method.

Detail management at skeletal level aimed at reducing the topological complexity of a virtual character
when far from the camera. Each skeletal node from the character scenegraph was assigned a distance
beyond which its degrees of freedom would not be evaluated. Three levels of details were de�ned corre-
sponding to nine, four and zero nodes.

Detail management at behavioral level was closely connected to the geometric and skeletal level. For
example, at a distance that would allow the simpli�cation of the model by incorporating the geometry
of the head into that of the thorax, there would be no need to perform any visual activity management.

[Rodriguez et al., 2010] demonstrated the utility of their method on a simulation of a town and its
surroundings with up to 6000 characters displayed at 25 frames per second.

In contrast to previous work which used discrete solutions for geometry management, such as [Dobbyn
et al., 2005] who used impostors beyond a certain distance and [Rodriguez et al., 2010] who used three
skeletal levels of detail, [Ramos et al., 2012] proposed an approach based on continuous level of detail
combined with mesh instancing and hardware palette skinning.

The advantages of this approach were the following: continuous level of detail o�ered better granularity,
by exactly specifying how many polygons needed to be rendered, mesh instancing allowed applications to
render a mesh multiple times in di�erent positions with a single draw call, and hardware palette skinning
codi�ed all animation information on a texture.

The level of detail to display an entire character was decided based on the distance to the camera (no
speci�c details were provided about this criterion). A performance analysis was conducted by measuring
the triangle throughput when varying the number of characters in the scene with constant visual quality
(as determined by the previously mentioned condition for the level of detail). This analysis showed that
the continuous model of LOD could o�er a balance between performance and perceived visual quality.
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Motivated by the �ndings of [Hamill et al., 2005], [Yuksel et al., 2012] proposed an impostor rendering
method using image morphing techniques. These techniques aimed at cutting the number of intermediate
frames of animation in half and recreating them in the rendering phase, in order to save space from the
texture memory of the GPU that could be used to enhance visual quality by di�erent means.

The visual performance of the image morphing algorithm was statistically found to provide close results
to the original images. A user study showed that the method provided 38% smoother animations and
increased the appearance quality by 87% compared to a reference application built in OpenGL and GLSL.

In conclusion of this chapter, we would like to specify that although evaluating the extent to which
di�erent rendering acceleration techniques achieve realism in the same measure as the impractical high
resolution representation still relies on perceptual studies, we can distinguish an obvious concern towards
providing guidelines as to how these techniques perform. Yet, we can point out another reason for
which such guidelines are hard to formulate in a robust manner, namely due to the nature of crowd
simulation applications which heavily rely on ongoing hardware development that can make previous
�ndings inapplicable to current implementations.



3 | Gestures

Gesture recognition is being investigated in various research �elds (computer animation, computer vision,
human-computer interaction) for the wide range of applications that it generates in real life (games,
mobile interactions, surveillance, etc). Recognizing the gestures performed by a virtual character can
help a sports trainer improve the student's performance [Majoe et al., 2009a], or mediate the interaction
between a virtual character and a real person in a theatrical representation [Billon et al., 2008]. Hand
gestures are given a particular attention and remain the basic input material for this research [Martin
et al., 2010], [Oshita and Matsunaga, 2010], [Gªomb et al., 2011].

Most commonly, gesture recognition consists of a feature extraction phase, a dimensionality reduction
and training phase, and a classi�cation phase. In the following, we will review a number of papers
grouped on the methods used for the matching or classi�cation phase.

3.1 Hidden Markov Model

The Hidden Markov Model is a popular technique for recognizing gestures. The model represents a
network of nodes that produce symbols and are interconnected by transition represented by probabilities,
hence the need to reduce the input signal to a discrete series of symbols [Oshita and Matsunaga, 2010].

[Majoe et al., 2009a,b] used HMM to classify Tai Chi movements. Their initial endeavor in this area was
presented in [Kunze et al., 2006]. They studied the feasibility of using low-cost motion capture equipment
such as gyroscopes and accelerometers worn on the body for whole-body dynamic movements' recognition.
By placing sensors at the upper arms, lower legs, knees, neck and rear hip, the authors collected data
from two Tai Chi experts and two amateurs performing three speci�c movements.

By analyzing the raw data, it was found that the signals collected from the experts showed peaks of
approximately the same length, smoothness and periodicity, corresponding to consistency in execution.
On the other hand, the amateurs showed a higher number of events where the absolute sum of foot
gyroscopes was close to zero, corresponding to pauses and jerky movements. Also, the experts showed
faster neck and hip movements. Next, the energy required to perform the exercises was examined. The
squared angular velocity, ω2 in (rad/s)2, indicated the rotational energy, de�ned by Erotational = 1

2Iω
2.

It was found that the experts had the least rotational energy consumption.

Using a sliding window over the data, two features were analyzed closely, the 75th percentile and the
frequency range power of the accelerometer x-axis at the neck. These showed clear separation between
the amateurs and the experts. KNN clustering on these features resulted in a 76% correct classi�cation
using cross validation, while adding the RMS to a second KNN classi�er resulted in an improved 85%
correct classi�cation.

Finding that the used sensors provided a good base for capturing data in this scope, [Majoe et al.,
2009a,b] used forward kinematics to create a 3D avatar that provided positional data for the body.
To use HMM for recognition, it was necessary to translate the sequences into observation codes, these
being the features. In an attempt to see whether observing the action correlation (between two limbs
for example) would improve the recognition process or not, three di�erent approaches were designed for
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Chapter 3. Gestures 8

features derivation in three dimensions: �rst the angle between any two limb end and the torso, second
the vectors between any two limb ends and third, the 3D trajectory data of any limb. Combining the
limbs, nine total feature extraction methods were tested. To keep the number of codes to a small value
(12 in this case), k-means clustering was used to cluster the training data before feature generation. The
corresponding HMMs were trained on �ve di�erent Tai Chi movements. The best recognition rate, 99.7%
was obtained for the two dimensional features.

[Xiang et al., 2006] used Isomap for dimensionality reduction and HMM for classi�cation. A 16 joint
skeleton was used and an initial 48 dimensional feature vector was generated from motion capture data.
The eight bones that constituted the limbs and connected the root and chest were chosen as additional
features, represented by angles and position. Further, joint velocities were added, resulting in a 72
dimensional feature vector. Driven by the fact that Isomap could �nd a meaningful low-dimensional
structure behind the original observations, the authors utilized this approach to reduce dimensionality
and obtained a 7 low-dimensional space with minimal residual error.

Next AdaBoost was used to combine an ensemble of HMMs (a set of classi�ers whose decisions are
combined). Experiments were run on more than 1000 motion clips including typical motions (walking,
running, jumping, etc) and the best recognition rate, 93.2% was obtained for running.

[Gªomb et al., 2011] also used HMMs, combined with Vector Quantization (VQ). Regarding human
motion as a time sequence of vectors or features, a quantization function was used to transform the
sequence into a series of discrete symbols. To �rst derive the number of symbols, the discrete symbol
series were treated as strings and the Levenshtein distance (equal to the smallest number of deletions,
insertions and reversals that will transform a string into the other [Levenshtein, 1966]) between them
was calculated. Both distance between strings from the same gestures class and distance between strings
from di�erent gesture classes were computed. For each of the two distance types, normalized histograms
hW (within-class) and hB (between-class) were computed. Then, the Bhattacharyya distance [Kailath,
1967] between the histograms (calculated as dB(hB , hW ) = − ln

∑
i∈I
√
hB(i)hw(i)) was maximized in

order to �nd the number of symbols that achieved the best separation between classes.

Next, the authors proposed a procedure to improve initial values for the HMM parameters, based on
K-means clustering. The Baum-Welch algorithm [Baum et al., 1970] subsequently improved these pa-
rameters. The experiments showed that maximizing the Bhattacharyya distance to obtain the number of
symbols gave the best results. Additionally, a guideline for choosing the number of states for the HMM
as under 30 was put forward.

3.2 Dynamic Time Warping

Dynamic time warping (DTW) is used to compare similarity between two time-dependent sequences
which can be discrete signals or feature sequences sampled at equidistant points in time [Müller, 2007].
In this section we will review a number of papers that use DTW to compute the similarities between
feature sequences that correspond to di�erent gestures.

[Billon et al., 2008] focused on recognizing gestures in a real-time �ow of actions. The starting point was
de�ning the gesture as a variation (in this case, angle or acceleration variation) between two rest states.
Compared to the usual approach we have seen so far - recording multiple executions of various gestures,
reducing dimensionality and classi�cation for matching - an interesting idea of this research was to design
a multiagent sytem where each agent (called an Observer) represented a gesture and was triggered when
it started to recognize itself in the �ow.

PCA was used similarly to feature selection to select a subset of relevant features, in the form of a
projection matrix that allowed the mapping of the gesture in 2D space, as a curve. Given a posture in
time, an Observer checked its signature (the 2D curve). This was done for all Observers corresponding
to all gestures at the same time.
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To accurately choose the right Observer, three so-called �delity values were calculated: the distance be-
tween curves using Dynamic Time Warping [Berndt and Cli�ord, 1996], the noise toleration at beginning
and end of the observation and the di�erence in time.

An initial experiment aimed at recognizing the random replays (played by an animation engine) of 22
pointing gestures. All gestures were recognized. For the second experiment, the Wii Remote was used to
record seven participants executing four di�erent gestures thrice. The �rst evaluation of the experiment
aimed at comparing one execution of the same gesture to the other two and found 61% recognized
gestures, meaning that humans' repetition of the same gesture was not accurate enough for the system.
The second evaluation looked at recognizing all the gestures performed by one person and resulted in a
better recognition rate of 83%. The third evaluation compared four executions for each gesture to all the
other executions of all gestures and showed a recognition rate of 86%. The average recognition time was
0.7 seconds before the gesture ended.

[Billon et al., 2010] improved the previous work by investigating the overlapping between the ending and
beginning phases of two consecutive gestures and by restricting a following set of gesture for a recognized
gesture. This way, false positives were excluded from the recognition process.

The experiments were also improved by testing two di�erent databases of gestures. The �rst one consisted
of 8 closely similar gestures repeated a few times, leading to 22 motions. The second one consisted of 7
increasingly di�cult to reproduce gestures repeated a few times to a total of 21 motions. The databases
were tested separately, 100% recognition was achieved for the �rst one and only one unrecognized gesture
for the second one. Recognition time was on average 0.5 seconds before the end of each gesture.

This research also resulted in a convincing public demonstration of a Capoeira �ght between a real human
and a virtual one.

[Martin et al., 2010] analyzed hand gestures using a combined approach of Vector Quantization (VQ) and
DTW. Data was collected via a Vicon system with 11 markers on the hands. Nine features were selected
for extraction and normalization, such as distance between thumb tip and index �nger tip markers or
angles between successive velocities.

VQ was used to map the feature vectors to codebook vectors. Distribution of these vectors in feature
space was done using k-means clustering, self-organizing maps or growing neural gas. Then, for each
feature vector, the closest codebook vector was computed, obtaining new feature sequences.

After that, DTW was used to compute the distances between sequences. Di�erent distances between
individual symbols were used for each of the three training procedures mentioned above: for k-means and
GNG, the Euclidean distance between codebook vectors assigned to the two symbols, and the distance
between two neurons assigned to the two symbols on the SOM grid for SOM.

In the experimentation phase, eleven every day actions were recorded to constitute the training data.
The validation and test data were formed of seven long sequences containing new gestures or variations
of the training set gestures. Each sequence was recorded three times, the �rst time for the validation
data, and the next two times for the test data. To �nd the best feature sets (a combination of features
that gave the best results), an evaluation algorithm was run over all possible combinations, but without
VQ. Three feature sets were chosen and the test data recognition performance was noted for each of the
three training approaches. The recognition rates were around 65 − 70%, with the best value of 72.23%
obtained by SOM combined with one of the feature sets.

3.3 Recognition Paths

[Oshita and Matsunaga, 2010] developed a recognition model represented as a state machine, by applying
SOM to all feature vectors from sample data, resulting into units that made up the states. This approach
was based on the observation that each gesture could be decomposed in atomic actions that followed each
other in a sequence. Each phase of the gesture was represented by a state and the continuity between
the phases was modeled through transitions occurring with a given probability. Each state was linked to
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the initial state as gestures could be interrupted any time (a feature that we haven't seen so far). Beside
the state machine, the recognition model also contained an initial state and a recognition path.

The authors claimed to have made a step towards full automatization of the process, and illustrate this
through a novel technique of automatically selecting the number of units of each state machine. For this,
several state machines were built per gesture with varying number of units and the optimum one was
chosen as the one that minimized the sum e = e1 + ke2, where e1 was the error rate that correct inputs
were not recognized and e2 was the error rate that incorrect inputs were recognized. Even so, the second
error rate was weighted by a parameter k, stated to be application dependent.

Now, that the states were obtained, all that was needed to �nalize the state machine that modeled a
gesture was to train an SVM to learn the transitions between states. Next, the recognition path was
built as a series of states from input sample data.

Finally, in the experimentation phase, two hand gestures (a simple one and a complex one) were recorded
ten times each, using Wii Remote controllers. The feature vectors consisted of 3D accelerations from
each hand. Best recognition for both gestures resulted for a number of four states in the corresponding
state machines. For the simple gesture the recognition rate was 98%, and for the complex gesture the
recognition rate was 80%.



4 | Behavior in Crowds

Crowd simulation has been a prodigious subject that has generated numerous quality simulation tech-
niques over the past years, pushing the boundaries of real time performance, the number of simulated
agents and diversities of scenarios. Complementary to this work, a recent interest in automatically
validating the quality of these simulations has emerged.

4.1 A Steering Benchmark

SteerBench was presented in [Singh et al., 2008] (under the name of "Watch Out!"), improved in [Singh
et al., 2009] and re�ned in [Kapadia et al., 2011a]. The framework consisted of two major components.
The �rst one was a benchmark suite of numerous steering scenarios, designed to cover a comprehensive
range of real life situations, classi�ed in �ve categories (simple scenarios, one-on-one interactions, agent-
agent interactions including obstacles, group interactions and large scale scenarios). The second was
comprised of a set of evaluation metrics designed to be customizable and independent from the steering
algorithm, as well as of a method to compare the results between two steering algorithms.

The principal metrics chosen were the following: the number of unique collision events, time e�ciency -
which showed how fast an agent achieves its goal, and e�ort e�ciency - measuring the optimality of total
kinetic energy use that an agent required towards its goal. Other numerous detailed metrics concerned
collision, turning, distance, speed and acceleration.

[Kapadia et al., 2011b] described a thorough analysis of the scenario space. Considering that the complete
scenario space consisted of all possible scenarios that could be obtained by combining user de�ned
parameters (namely environment size, obstacle discretization, number of agents and target speed of
agents), the most trivial possibilities were �ltered out by imposing constraints. For example, one of those
constraints was making all the agents interact with a reference agent. This method reveals the most
representative subspace of scenarios that were considered challenging for the tested steering algorithms.

The analysis also proposed new metrics to measure the performance of steering algorithms in that
subspace, in terms of coverage and quality. Coverage gave the ratio of successfully handled scenarios by a
steering algorithm with respect to a particular metric. The average quality was the average value of the
respective metric over all the sampled scenarios. The authors showed that the representative subspace
of scenarios was covered by a steering algorithm in a �nite number of test case samples.

As the primary metrics put forward in [Singh et al., 2009] were found to be unintuitively weighted in
the �nal score, [Kapadia et al., 2011a] proposed another measure based on the Principle of Least E�orts
(also used by [Guy et al., 2010]). Furthermore, by exploring the results of [Kapadia et al., 2011b] as
described above, three of the most challenging initial scenarios were maintained and other eight were
further added.

[Kapadia et al., 2009] built an interactive framework that provided a prede�ned set of rules which could
detect abnormal behaviors (considered actions of interest, as their presence or absence determined the
quality of a simulation) like steering in a circle, deviating from the target, or unnatural oscillations. Users
could combine di�erent rules to build up a complex behavior, such as pick-pocketing.

11
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As the authors have shown a consistent focus on developing this benchmark framework over the last few
years, which has already been used to test new methods [Karamouzas et al., 2009], it is most likely to
progress into a standard for steering algorithms evaluation.

4.2 Data Driven Evaluation

[Lerner et al., 2009] searched similar state characters in a simulated and in a real life crowd and compared
their actions in the respective situations. The example set was selected from video input where the
trajectories were tracked manually and the entries were checked for redundancy.

The state was formulated as the density of agents surrounding a particular character, while the action was
given by the trajectory across a two second time window centered at the corresponding state (a "short-
term" decision). The similarity function between the simulation state-action pair and the example set
state-action pair consisted of a normalized combination of the distance between states and the similarity
between actions. States were compared by calculating the di�erence of densities in the surrounding
regions, and actions were evaluated by distances between trajectories. The obtained score raised the
probability of an individual behavior to be either natural or curious. It could not be determined for sure
that a behavior fell in one of these two categories as the authors themselves did not claim that their
example set was exhaustive.

[Banerjee and Kraemer, 2011] recreated a real environment and populated it with virtual agents, then
compared the behavior in the simulated with the real scenarios by checking the match between agents'
distribution in the virtual region and the corresponding one in reality.

[Guy et al., 2010] developed a crowd simulation method based on the Principle of Least E�orts (PLE),
namely on minimizing the total metabolic energy used up when walking on a path. Knowing the instan-
taneous power during walking as P = es + ew|v|2, where es was the cost of being alive and ew captured
the biomechanical e�ciency of locomotion (constants per agent), they modeled the biomechanical energy

as E = m
∫ (

es + ew|v|2
)
dt.

A thorough validation of this technique was performed against other popular simulation techniques,
running on a number of known scenarios. The validation included an analytical comparison - by calcu-
lating the biomechanical energy of two agents exchanging position and then comparing it to an optimal
value -, a numerical comparison between the total biomechanical energies spent by agents in complex
scenarios where the optimal value was unknown, a quantitative comparison of their agents' responses
against empirical observations from crowd studies and lastly resorted to visual inspection to evaluate the
naturalness next to emergent behaviors.

[Xing et al., 2012] tackled the issue of real world data acquisition by employing Human Computation
(basically getting a task done by volunteers without them realizing it) and developed an evacuation game
to study the decisions real humans take when trying to escape from a room full of people. They found
that when choosing from two routes of di�erent sizes towards the same goal, the users will prefer the
clearer route, once the shorter route is occupied by ten or more agents. The in�uence of the exit size on
choosing the way out was also tested and the experiments revealed that even though the larger one is
prefer, when more agents prefer the smaller one, the user will be pushed towards that one as well.

[Musse et al., 2012] build a 4D histogram from the vector (x (t) , y (t)), where

(x (t) , y (t) , ẋ (t) , ẏ (t))
T
was a discrete time trajectory and the velocity vector was represented in polar

coordinates. To deal with memory constraints, all the sizes were mapped to a di�erent number of dis-
cretized bins H

(
xd, yd, θd, sd

)
. Up to this point, the histogram provided information over the global �ow

of the crowd. To investigate the sub�ows, the trajectories were clustered depending on their displacement
vectors made up by their start and end points. This was a useful feature in case of environments that
anticipated main �ows.

Crowds comparison was performed considering di�erent aspects. The similarity between global �ows was
given by a distance metric based on the Bhattacharyya coe�cient applied directly to the two normalized
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4D histograms. Relative spatial occupancy was given by considering the position information from the
histograms, resulting in 2D histograms that contained the relative spatial occupancy. Agents' density
could be easily deduced from these histograms knowing the total number of agents for each crowd. In a
similar manner, the orientation distribution histogram could be determined from the 4D histogram and
could be used to determine whether the two crowds have similar main orientations or not.

The algorithm was tested both on simulated crowds as well as on real life data. In both cases, the
�ows were simple and the compared crowds moved within the same environment. For the simulated
experiments, variations were introduced in the comparison aspects previously mentioned. The visual
inspection validated the experiment results showing that similar crowds obtained the expected similarity
score, with respect to all the analyzed aspects of global �ow, global orientation, spatial occupancy and
speeds distribution.

The main limitation of this method was that the comparison aspects were evaluated on a time frame,
so changes within that time frame could not be detected. However, this method provided a reliable
solution towards comparing two crowds, which was a step towards assessing a simulation's naturalness
when compared with real life data.

[Guy et al.] developed a measure of similarity between ground-truth data and simulated crowds, aimed
at eliminating some of the problems of the previous works, such as the inability of density-based met-
rics [Lerner et al., 2009] to cope with sparse scenarios. Simulators were formulated as functions that
produced an estimation of the crowd state at the next unit in time. In this context, an entropy metric
was introduced to measure the size of the prediction error for a given simulator. The entropy met-
ric was demonstrated to provide rankable results, namely unique scores for di�erent simulators, to be
discriminative, general, consistent in results across similar datasets and robust to noise existent in the
data.

The metric was tested by running di�erent simulation models (a rule-based steering approach, a social-
forces model and a predictive planning approach) on a common set of scenarios. Visual results showed
that indeed the simulators with the lowest entropy metric performed best in the given scenarios. A
perceptual study revealed a strong correlation between the entropy metric and similarity between the
real crowd and the simulated one as perceived by human subjects.



5 | Style

Several elements compose the human motion: the action, the cadence and the motion signature [Vasilescu,
2001a]. The human visual system can easily recognize the motion signature of a particular person, as
a means of evolutionary adaptation. Isolating the motion signature can reveal details about physical
attributes (such as gender, age, body structure), emotional state, or the individual's own style of moving.
Computer animation and computer vision researchers have worked on various fashions of separating and
parameterizing these attributes in order to recognize new motions as belonging to a known individual/set
of attributes or to recognize the action performed by a known person.

5.1 Gender

In order to discriminate gender from walking motion, [Troje, 2002a] regarded the walking sequence as
a time series of postures p, and �rst applied principal component analysis separately to the postures
of each walker, with the purpose of capturing redundancy. They obtained the following representation
p = p0 +

∑
i

cipi, where p0 was the average postures and pi were the �rst four principal components

accounting for more than 98% of the overall variance.

Observing that the temporal behavior of the �rst four components could be modeled with pure sine func-
tions, each walk was fully described by the average posture, the �rst four eigenpostures, the fundamental
frequency and the phases of the second, third and fourth principal components with respect to the �rst
component.

PCA was computed again on this space (of dimensionality 229), �nding that a linear discriminant function
(classi�er) could correctly separate male from female walkers in the existing dataset using between 4 and
14 components. Further, the authors investigated the capability of the classi�er to generalize to unknown
motions and eliminated one of the motions in the data set in turn and obtained the smallest classi�cation
error for a space dimensionality of 4. This showed that Fourier decomposition of walking data was a
nearly optimal representation in terms of covering variance with the smallest number of components and
was further used in [Troje, 2002b].

More, structural information was separated from dynamic information and di�erent classi�ers were
trained based on the two. The separation was done considering that the average posture p0 encoded
structural information, while the eigenpostures contained dynamic information. The authors found that
using only dynamic information for classi�cation gave the better performance.

[Troje, 2002b] focused on obtaining a system that was accurate enough to extract both biologically and
psychologically (emotional) attributes. The di�erence in this approach was that, to linearize the motion
data, �rst the postures were decomposed as second order Fourier expansions (leading to a representation
of a walking motion by p(j,0) called the average posture, and p(j,1), p(j,2), p(j,3), p(j,4), called characteristic
postures and ωj , the fundamental frequency). Second the space dimensionality was reduced, by applying
PCA which lead to the following representation of a walker: wj = v0 +

∑
kijvi, where v0 was the average

walker and vi were called the Eigenwalkers. The dimensionality was reduced from 226 to 15 (accounting
for 80% of the overall variance).

14
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To determine gender, a linear classi�er was found as the best solution of the overdetermined linear
system cK = r, where rj was 1 for a male walker and −1 for a female one, and K is the matrix of kij
coe�cients from the previous equation. The vector c therefore generalized the gender attribute. Adding
or subtracting this vector changed the appearance of a character from male to female.

Next, [Troje, 2008] used a similar method to [Troje, 2002b], with the slight di�erence that the data
was matched in the frequency domain, after computing the Fourier transform. The results in [Troje,
2002a] concerning structural and dynamic data were recon�rmed, by observing that removing the struc-
tural information did not a�ect classi�cation, while misclassi�cation rose when dynamic information was
removed from the data.

5.2 Individuality

[Vasilescu, 2001a] and [Vasilescu, 2001b] decomposed the motion in the action performed and motion
signature (or style). Three di�erent actions were performed in the styles of multiple subjects, and the
data was processed in order to parameterize distinct styles, to recognize speci�c individuals and to
synthesize new motion in the style of a particular person.

Motion capture was used to record three di�erent actions (walking, ascending and descending stairs) from
several subjects. For each person, the actions were averaged and represented as joint angles over time in
dataset matrix D. The dataset matrix was decomposed as follows D =

(
ZV TPT

)
AT 1 , where Z was

called the core matrix and contained basis motions independent of people and of actions, P was the people
matrix which contained the invariance across actions for each person, A was the action matrix encoding

di�erent actions invariant across people and S =
(
ZV TPT

)V T
contained person-speci�c signatures. The

unknown factors Z, P , and A were solved by applying the 2-mode vector analysis algorithm from n-mode
component analysis [Kapteyn et al., 1986] in numerical statistics.

This decomposition facilitated the calculation of a new signature for a person for whom only some of the
actions were known. As main result of this study, each motion was generated in all distinctive styles and
was successfully compared to ground-truth mocap data.

Using the same mathematical basis (n-mode component analysis) for the approach, [Vasilescu, 2002]
represented the motion capture data di�erently, namely in higher-order arrays or tensors instead of
matrices. To decompose the tensors according to the same principle, the author employed a formalism
called higher-order singular value decomposition.

This work answers more speci�cally the assessment problem that we investigate in this review through
a recognition method, aimed at identifying both the person who performs a known action, as well as
the action performed by a known person. Recognition was made possible by an existing mapping of the
motions either into the space of people parameters or the space of action parameters. A projection of
the motion onto one of these spaces was computed, and then a nearest neighbor recognition algorithm
retrieved either the best matching signature or action.

5.3 Emotion

Using the method described in [Vasilescu, 2002], [Kobayashi and Ohya, 2006] set out to identify gait
patterns corresponding to di�erent emotions. The main di�erences were the following: �rst, instead of
computing a signature matrix, they computed an emotion matrix, and second, instead of capturing several
subjects performing three distinct actions, they recorded four professional actors (male and female)
performing a gait under a speci�c state of mind (angry, disgust, fear, joy, sad, surprise).

1V T is a mathematical operator comprising of a transposition and a stacking of the matrix columns to obtain a column

vector.
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Taking advantage of the periodicity of the gait cycle, a wavelet analysis was performed to extract speci�c
motion features for each emotion. The authors focused on the angles between upper and front arm,
between upper arm and upper body and between lower and upper leg. The �ndings showed that all
emotions displayed either some sort of periodicity or temporal peaks (e.g. surprise depicts a decaying
temporal large peak in the angle between upper arm and upper body as a motion feature). In the light of
these �ndings, it looks like the wavelet analysis could be used to identify motion features in new motions
in order to assess whether they belong to a certain state of mind.

[Troje, 2008] and [Troje, 2002b] also looked at emotion classi�cation in motion and used the same
mechanism as for gender (see 5.1). Instead of the binary values used for female and male in the linear
classi�er calculation, averaged ratings from human observers were inputted in the vector r. These rating
were obtained in an experiment where six observers rated walking sequences as being within the "nervous"
and "relaxed" or the "happy" and "sad" range. The need to involve human observers in this experiment
comes naturally as emotional states are perceptual notions, unlike gender.

5.4 Other Attributes

[Sigal et al., 2010] and [Livne et al., 2012] focused on learning models for di�erent attributes (gender,
emotional state, as well as weight and age) from a combination of partially labeled video and motion
capture data. They also explored the biological cues that determine humans to rate a virtual character
motion with respect to the previously mentioned attributes. The mathematical method for processing
mocap data and experimental methods for the attributes rating by human observers were similar to
the work of [Troje, 2008]. The rest of the works covered attributes inference by human observers from
video-based 3D trackers output, which although an interesting study on motion style, does not directly
concern our review.



6 | Kinematics

In this chapter we will review a number of papers that use kinematics for three di�erent purposes: to
calculate transition probabilities or costs in motion graphs (6.1), to analyze joint angles and velocities
during gait (6.2), or to assess motion estimation and interactive control techniques (6.3).

6.1 Motion Graphs Transitions

Motion capture databases are used to aid animators in their task of creating new, realistic motions of
human virtual characters. Motion graphs represent the ways in which recorded motions can be combined.
Assessment of whether it is possible to combine two motions is given by a measure of resemblance, called
a distance metric [van Basten and Egges, 2009]. We will discuss distance metrics that involve kinematics
in the following.

[Lee et al., 2002] designed three interfaces through which a user could interactively control a virtual
character, by choosing from a number of options every few seconds of where the avatar to go, or how to
behave; by sketching on the terrain the path for the character to follow; or by performing in front of a
video camera a motion for the character to reproduce. To enable this, a database of recorded motions
was organized in such way as to comprise the transition possibilities from one motion to another, then
clustered to optimize searching appropriately to each interface described above.

The �rst step was made possible by modeling the data as a �rst-order Markov process, where the
transitions between two states depended only on that respective current state. Transitions were expressed
as probabilities, given by an exponential function depending on the distance between two frames, and
a σ term that controlled the mapping between the distance and the corresponding probability. The
distance between two frames was computed as Dij = d (pi, pj) + νd (vi, vj), where d (pi, pj) represented
the weighted di�erences of joint angles, d (vi, vj) represented the weighted di�erences of joint velocities
and ν, a weighting term.

For a similar purpose - that of interactively controlling a virtual character -, [Arikan and Forsyth, 2002]
also used the di�erences between joint positions and joint velocities to calculate the transition costs
from one frame to another. In addition, they also used the di�erence between the torso velocities and
accelerations. All were expressed in the torso coordinate frame.

[Wang and Bodenheimer, 2003] assessed the cost metric proposed by [Lee et al., 2002]. In the original cost
metric, the distances between velocities were calculated as Euclidean distances, while for the positions,

the following formula was employed: d (pi, pj) = ‖p(i,0) − p(j,0)‖
2

+
∑m
k=1 wk‖log

(
q(j,k)

−1q(i,k)
)
‖2, where

the �rst term represented the squared norm of the di�erence in global translational positions, and the
second term represented the weighted sum of squared geodesic norms of the orientations of joint k in
frames i and j in quaternion space. The original set of weights were one for shoulders, elbows, hips,
knees, pelvis and spine, the other were zeros. [Wang and Bodenheimer, 2003] found the optimal set of
weights, with the aid of an animation expert who examined good and bad transitions. For the ν term,
they found that its in�uence was rather small and varied the term from 0 to 100 and found no signi�cant
di�erences, so they �xed its value at one.
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A cross-validation study revealed that the optimal weights were robust and provided a good choice for
transitions between a wide variety of motions. A user study con�rmed that the optimal weights showed
better and more natural results than the original weights.

Next, [van Basten and Egges, 2009] also investigated the e�ciency of the cost metric proposed by [Lee
et al., 2002] in comparison with two other metrics, proposed by [Kovar et al., 2002] (also used in [Zhao
and Safonova, 2009]), based on point clouds and by [Egges et al., 2004] and by [Forbes and Fiume, 2005]
based on principal components. Assessing [Lee et al., 2002]'s metric was done using the weights found
by [Wang and Bodenheimer, 2003], as mentioned above.

Three aspects were assessed: foot skating, path deviation and on-line running time. The joint-angle
metric performed best in terms of path deviation, as well as in running time.

6.2 Gait Analysis

Joint kinematics measurement shows potential in aiding clinical evaluation and therapeutic treatment
comparisons [Favre et al., 2008]. For this reason, several techniques were developed to measure joint
motion, especially for the lower limbs.

[O'Donovan et al., 2007] used angular rate and magnetic (AARM) sensors to measure the joint angles
from the orientation of one segment relative to another, and applied their method to the ankle joint.
Evaluation of their approach was performed through an experiment which involved two subjects who
performed 13 leg exercises. Comparison was made with a 3D motion analysis system based on markers.
The root mean square error was calculated for the angles measured through the authors' approach and the

angles measured by the motion analysis system, as RMSE =

√
1/T

∑T
k=1

(
φ (k)

S − φ (k)
E
)2

, where S

meant angles measured with the AARM sensors and E meant angles measured with the motion analysis
system. The considered angles were: �exion, internal/external rotation and in/eversion. Results showed
a strong correlation between the two measurement methods.

[Favre et al., 2008] measured the knee joint angle using two inertial measurement units (IMUs), attached
to the thigh and shank. They estimated the orientations of the two IMUs, and then aligned the two
reference frames, to get the knee angle. Validation of the method was made through an experiment
where two subjects performed two hip abduction/adduction movements and two level ground walks of 30
meters. For comparison, a magnetic tracking device was used to simultaneously record the experimental
data. A thorough assessment of the experimental data included �ve parameters: �rmness of the knee
during hip abduction/adduction movement, errors of alignment, repeatability of the transformation angle
between the reference frames, repeatability of the standing posture and errors of the system for 3D knee
angle measurement.

Knee �rmness was estimated by measuring the variation of knee angle during movement. The di�erential
orientation between the thigh frame and the shank frame were measured by the magnetic tracking system
and the standard deviation of the total angle corresponding to the di�erential orientation was calculated.
The �rmness hypothesis was validated by the small variations of the standard deviation.

The alignment error was represented by the di�erential orientation between the shank inertial and mag-
netic frames. Results showed that the two reference frames of the IMUs could be aligned accurately with
an error of less than 5% in the horizontal plane.

The errors of the system for 3D knee angle measurement were assessed using the joint coordinate system
recommended by the International Society of Biomechanics. The inertial and magnetic measured angles
were compared by calculating an o�set error, due to misalignment of the thigh and shank �xed reference
frames, a dynamic error during walking trials, and the correlation coe�cient (CC) between the two
systems.

The o�set error was found to be small for �exion/extension and abduction/adduction and high for inter-
nal/external rotation, as a consequence of the horizontal alignment error. The dynamic error was small
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for all angles, and the CC was high for �exion/extension, for internal/external rotation and acceptable
for abduction/adduction.

[Favre et al., 2010] proposed a combined system including a stationary motion capture system for cal-
ibration and wearable sensors for measuring lower body joint angles and segmental angular velocities.
The motivation behind this system was the advanced calibration procedures for stationary systems and
the possibility to measure gait over long distances. The same equipments were used as in [Favre et al.,
2008], with the magnetic-based motion capture device as the stationary system and the IMUs as the
wearable system.

Reliability of this method was shown by calculating the anatomical landmarks dispersion across calibra-
tions and the e�ects of this dispersion on anatomical frames and kinematics. To assess kinematics intra
and inter-trial repeatability, the following factors were employed: the o�set µj = 1/100‖

∑100
i=1X (i) −∑100

i=1 xj (i) ‖, calculated between the original X and the corrupted x mean cycle kinematics (corrupted
kinematics were obtained by applying the di�erence of orientation between the mean anatomical frame
and the anatomical frames obtained for each of the subjects repetitions of the experiment to the anatom-
ical frame of a healthy subject), the coe�cient of multiple correlation (CMC) for the similarity between
the relative corrupted patterns, the dispersion σi of the corrupted kinematics, and δ as the dispersion of
characteristic features among the corrupted cycles.

[Ferrari et al., 2010] assessed "Outwalk", a protocol to measure thorax-pelvis and lower-limb kinematics
during gait, with the aid of Xsens, as an inertial and magnetic measurement system (IMMS). The
system's ability to measure joint kinematics was compared with Vicon, via a clinical gait analysis protocol
consistent with International Society of Biomechanics, called CAST.

During experimentation, both systems measured the same gait cycles synchronously. Three tests were
performed: Outwalk and CAST applied to Vicon data, determining accuracy of Xsens and Vicon data
processed with CAST and the di�erences between the kinematics of Outwalk applied to Xsens data and
CAST applied to Vicon data. Five parameters were assessed for each test. Namely, for the third test,
OX(t) and CV (t) represented the waveforms for each measured joint angle, given by the Outwalk-Xsens
and CAST-Vicon data and protocols.

The computed parameters were: an o�set off = mean (OX (t))−mean (CV (t)), r - the Pearson's corre-
lation coe�cient, the di�erence between the range of motion ∆ROM = ROM (OX (t))−ROM (CV (t)),
and two coe�cient of multiple correlation (CMC) calculated before and after zeroing the o�set off for
each pair OX(t), CV (t).

Results showed that removing the o�set improved the CMC values signi�cantly. Also, the results for the
other parameters showed a clear correspondence between the Outwalk kinematics with Xsens data and
the CAST kinematics with Vicon data.

[Djuri¢-Jovi£i¢ et al., 2011] presented a method based on digital �ltering to estimate leg joints angles
using accelerometer arrays attached to body segments. The angles were obtained by subtracting the
absolute angles of the neighboring leg segments.

To assess the accuracy of the algorithm, an experiment was performed where several subject walked at
their natural pace and on a treadmill at various speeds. Goniometers were used as the reference system.
The di�erence between the angles obtained by the proposed method and the angles obtained from the
goniometers was calculated. Then the Pearson's correlation coe�cient and the root square mean error
were calculated between the experimental angles and the reference angles. Results showed that the
method was reliable for measuring angles for clinical applications.

6.3 Motion Estimation

We will refer in this section to a number of papers that studied motion estimation and interactive control
of virtual humans from di�erent sources like video cameras or a simpli�ed set of sensors.
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[Chai and Hodgins, 2005] investigated an approach to performance animation aided by video cameras
and a small number of markers as well as by a prerecorded motions database. Users were able to control
virtual characters in real time, performing di�erent behaviors. The performance of this method was
correlated to the low-dimensional human motion representation developed in this scope. The method
was therefore compared with other dimensionality reduction techniques by comparing the reconstruction
error, calculated as the L2 distance between the original motion and the reconstructed motion. In an
end-to-end evaluation, the motion of a user was recorded using a full marker system and compared to
the reconstructed motion via the small set of markers and video cameras. A reconstruction error of 2.54
degrees per joint angle was obtained.

[Sminchisescu et al., 2005] developed a probabilistically motivated tracking algorithm, based on a Bayesian
Mixture of Experts Model. A human motion capture database was used in the learning algorithm. Mo-
tions were reconstructed from video camera input data.The approach was evaluated by computing the
root mean square error per joint angle in degrees. A similar measure was used by [O'Donovan et al.,
2007], discussed in the previous section 6.2.

Furthermore in this area, [Liu et al., 2011] studied an approach to control virtual characters with the
aid of motion data captured with inertial sensors. They employed statistical motion modeling in which
the closest poses from the database to the current pose were used as training data to learn a dynamic
model mapping previous poses to the current pose. Among others, they used leave-one-out evaluation to
validate their results. In this phase, human animations were synthesized and the errors were measured
by degrees per joint angle per frame.

[Sigal and Black, 2006] debated that using joint angle distances as error measures (as we've seen so
far in this section) depended on the parameterization of the human body, therefore it could not be
used to compare di�erent methods applied on characters with di�erent degrees of freedom or di�erent
parameterizations of the joint angles. To overcome this di�culty, they provided a dataset to be used
for comparisons and proposed an error measure with wide applicability. This measure was based on a
sparse set of virtual markers that corresponded to joint and limb endpoints locations. Mathematically,

the proposed measure was formulated as D
(
X, X̂, ∆̂

)
=
∑M
m=1

δ̂m‖xm−x̂m‖∑M
i=1 δ̂i

, whereM was the number of

markers, X the body state expressed according to the marker positions m, and δ̂m was 1 if the proposed
algorithm could recover the respective marker and 0 otherwise. This way, the binary selection variable
∆̂ = {δ̂1, δ̂2, . . . , δ̂M} could ensure that algorithms that used di�erent representations could be compared.
The 3D error was calculated in millimeters.



7 | Physics

As perceived realism and the physical realism of a motion are interconnected [Geijtenbeek et al., 2010],
it is needless to say that evaluating if an animated character obeys the laws of physics gives a clear
indicator of whether the technique that generated the motion is able to produce visually realistic and
physically feasible results.

7.1 Studies on Interpolation, Concatenation and Adaptation

[Safonova and Hodgins, 2005] studied linear interpolated human motions and identi�ed a number of
properties that needed to be ensured in order to obtain a physically correct resulting motion. The
analysis was conducted on the three separate phases of a motion: the �ight, the contact and the transition
between the two.

It was shown that interpolating the center of mass trajectories instead of the root positions would
eliminate the non-linearity in the center of mass trajectory during the �ight phase, leaving the components
that are not in�uenced by gravity constant. In this phase, the angular momentum would remain constant
should the motions lack visible rotations, or rotate approximately around the same axis.

Imposing that the feet should not slide on contact with the environment, the analysis showed that
interpolating the feet positions, the body center of mass positions and the non-redundant degrees of
freedom (root position, all joint angles except legs and two "knee circle" parameters) would preserve
continuity of the motion in this situation.

Next, the analysis showed that if two motions were statically balanced, the resulting interpolated motion
would be the same. Ground contact was imposed to require a limited coe�cient of friction, and it was
shown that if the interpolated motions had a ground reaction force within the friction cone, the resulting
motion would also satisfy this property.

Last, in the transition phase, it was shown that for motions that lacked rotation during �ight, rotated
approximately around the same axis, or took place in the vertical plane, the velocity of the center of
mass would be continuous.

This analysis can be regarded as an inverse procedure than that of the assessment that we are discussing
in this review, as it reveals a procedure that ensures physical correctness. Subsequently, we will point
out several works that evaluate the physical correctness of motions resulted either from interpolation,
retargeting or concatenation.

[Pronost and Dumont, 2006] focused on retargeted and interpolated motions and investigated the physical
validity of an adapted motion by comparing the resulting forces and torques with biomechanical literature
and by comparing ground reaction forces with experimental data from force plates. Using a virtual
character with morphology identical to a real one and analyzing the plots of di�erent measures (ground
reaction forces, vertical, lateral and fore-aft forces and torques at each joint) showed that these measures
behave as expected from known biomechanical properties. Di�erent real locomotions were analyzed
during a full gait cycle and several observations were made that con�rmed known properties such as the
double hump of the vertical force, the negative lateral force during the stance phase, or the backward
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direction of the fore-aft force during the �rst half of the support and the opposite orientation during the
second half.

Further, [Pronost and Dumont, 2007] used the forces and torques that drove the motion to synthesize
new physically valid motions. The authors investigated the relationship between force and torques
normalizations and motion style of character morphology. For this purpose, a set of motions performed by
two characters were compared based on the kinematical di�erence between the motions (by analyzing the
lateral, horizontal and vertical components of the root node) and the di�erences between the normalized
ground reaction forces. This comparison was a statistical evaluation using the root means square error
(of the �rst order), the average value of Euclidian distances, the average value of correlation coe�cient
and the average �rst time derivative.

[Multon et al., 2007] studied the physical correctness when retargeting acrobatic aerial motions to char-
acters with di�erent topologies. They corrected the center of mass position and ensured that the angular
momentum was constant during the aerial phase. The latter was done through two di�erent strategies:
by adapting the angular velocity of the root while keeping the pose unchanged and by adjusting the
rotation of the body segments (�rst arms, then legs) to keep the total angular velocity unchanged. The
X, Y and Z components of the angular momentum during the aerial phase of a corrected and an original
motion capture sequence scaled on a di�erent character were plotted and compared. The graph revealed
that indeed the angular momentum was constant for the corrected motion.

[Shum et al., 2009] explored the angular momenta of two motions to obtain a physically correct concate-
nated motion. Similarly to [Multon et al., 2007], in order to validate the results, the angular momentum
trajectories during two consecutive forwards �ips were plotted as executed by a real performer and by
a virtual character driven by their method. A close look at this simple graph revealed that the results
were similar to the real performance.

Similarly, to validate their method for real-time motion adaptation, [Hoyet et al., 2010] plotted the
trajectory of the center of pressure and compared a pushing motion with an adapted one where 200 N
force were added. The graph showed that the center of pressure for the adapted motion remained close
to the center of pressure of the original one.

Therefore, we can conclude from the last four cited articles that comparing trajectories, either by ob-
serving similarities in graphs or using statistical measures is a useful and visual inspection correlated
indicator of the physical validity of a motion. It would be interesting to see which other measures be-
side the root node position, angular momentum and center of pressure could provide reliable assessment
material.

7.2 Muscular Models and Injury Assessment

[Geijtenbeek et al., 2010] took a step further and looked at a musculoskeletal model of a virtual character.
They designed two quality measures. The dynamic error measure accounted for the amount of external
force and moment required for the motion to satisfy the Newton-Euler laws of motion. These laws state
that changes in linear and angular momentum have to correspond to external forces due to gravity and
environment interaction.

The second measure, called the muscle error measure was de�ned as the total amount of excess muscle
force (on top of the maximum capacity) required for a character to perform an animation, normalized
by the total maximum force of all muscles in the model. This showed whether the e�ort that a muscle
put in a motion was realistic or not.

The two measures were combined in a �nal score as the average across all frames in an animation.
Experiments showed that changing the weight of the virtual body resulted in an increased muscle error for
more e�ort-intensive motions. The muscle error as well as the dynamics error were found to be correlated
with slowing down or speeding up the animation for dynamic motions, like walking or jumping, showing
that these modi�cations cannot be done without the respective adjustments in the motion.
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[Geijtenbeek et al., 2011] also tackled the issue of injury in an animated character. Research on injuries
from motor-vehicle accidents underlay a set of individual measures for head, neck, chest, pelvis, arms,
legs, ankles and feet. Except for the head, the individual measure represented the normalized maximum
of a physical property averaged over a time window. This physical property was taken from literature
and was given by, for example, the maximum acceleration for the pelvis during side impact for the pelvis
injury measure, or the total magnitude of constraint forces applied by the wrist joint to hand and lower
arm for the arms measure.

The �nal score was an average of all the independent measures. A user study showed a signi�cant
correlation between the measure as de�ned earlier and the injury level perceived by observers, thus
validating the fact that the measure was reliable in assessing the injury in�icted on a virtual character.



8 | Soft Tissue Simulation

Soft tissue simulation is a widely researched area due to multiple applications in computer graphics,
biomechanics and medicine. Main interests include modeling organs, muscles and skin deformations.
As this research provides numerous applications in the domains mentioned earlier, the validation of the
researched models is a main concern. The most popular means of evaluating experimental results are:
comparison with magnetic resonance imaging (MRI) or ultrasound data (mainly discussed in section
8.1), comparison with dense marker data (discussed in section 8.2) and in vivo experiments. The last
type of validation experiments is common for organ simulation for surgical purposes. In this case, it is
of paramount importance to have a thorough validation of the model. However, in vivo experiments are
mostly carried out on animals. In this review, we would like to take a look at evaluation possibilities in
the case of human virtual character muscles and skin modeling.

In the following, we will discuss muscle modeling and skin deformation modeling techniques. In this area,
there are three main methodologies developed so far: geometrically-based, physically-based and data-
driven approaches [Lee et al., 2010]. We will see how each of these matches the evaluation techniques
mentioned above.

8.1 Muscles

[Arnold et al., 2000] developed a method to construct models of musculoskeletal geometry from MR
images. They used around 250 images to build the models for three lower extremity cadaveric specimens.

For evaluation, the tendon excursion method was used to determine the hip �exion-extension and knee
�exion moment arms. This method implied measuring the length changes of three muscles (the medial
hamstrings comprised of the semimembranosus and semitendinosus muscles and the psoas muscle, chosen
because of the interventions performed on them to treat movement abnormalities provoked by cerebral
palsy) during �exion. The moment arms were calculated as the partial derivative of the muscle-tendon
lengths with respect to joint angle. All the data was collected through an experiment performed on
cadaveric specimens. This data was compared with the moment arms predicted by the implemented
model. The average error was computed as the average of the absolute di�erence between the moment
arms, in millimeters and as percentage of the experimental moment arms.

The average errors were within 10% of the experimental moment arms. Further, the errors in the length
changes of the muscles that corresponded to the movement arm errors, were calculated and compared to
variations in the peak muscle-tendon lengths from 18 unimpaired subject. The maximum errors found
were less than one standard deviation of the peak experimental lengths.

[Lemos et al., 2005] developed a non-linear dynamic �nite element model to solve a continuum model for
general muscle �ber architecture. Theoretical results provided by the model were compared to ultrasound
medical imaging experimental results. The structural changes and force production in the tibialis anterior
muscles during contraction were investigated by measuring relaxed and activated fascicle lengths (in
millimeters), angle of pennation (in degrees) and external forces, for di�erent levels (percentages of the
maximum torque) of maximum voluntary contraction. The theoretical results were found in agreement
with experimental data.
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[Blemker and Delp, 2005] used MR images of a live subject to create 3D �nite-element models of four
muscles that crossed the hip. To evaluate their model, the muscle moment arms mafiber were calculated
according to the principal of virtual work,mafiber = ∂lfiber/∂θ, where the function lfiber (θ) was obtained
by �tting a fourth-order polynomial to the observed �ber lengths and joint angles. The moment arms
were compared with the previously discussed results of [Arnold et al., 2000], among others. Next, the
changes in shape of the 3D muscle models were compared to those obtained from MR images. Each point
of the surfaces segmented from MR images was projected on the surface of the 3D muscle model, resulting
in distance errors for each point. The average and root mean square (RMS) errors were calculated across
all points.

[Südho� et al., 2009] studied a method to reconstruct 3D knee muscles models from MRI images. The
method was an adaptation of the deformation of a parametric speci�c object (DPSO) approach, which
required a low number of axial MRI images (slices) to reconstruct the geometry of the knee. The
contours of 12 muscles from 15 young subjects (both asymptomatic and su�ering of ligament rupture)
were outlined manually using speci�c software.

A reference model was built from the manual identi�cation of 300 continuous images, for two random
asymptomatic subjects. The volume error was investigated as the di�erence between the reference and
the model built using the DPSO method. They found that for �ve to seven slices, the error was inferior
to 5%.

Also, similarly to [Blemker and Delp, 2005], the error in shape was calculated by projecting each point
on the experimental model surface onto the reference model surface and taking the distance between
point and projection (called point-surface error). The RMS was less than 5 mm for seven slices or more.

To test the reproducibility of muscle reconstruction with the DPSO method, two operators reconstructed
the muscles from ten asymptomatic subjects, using the optimum number of slices for an under 5%
error determined by the DPSO method. The work load was reduced from 12 hours to one hour per
subject. The relative volume reproducibility was calculated as the absolute di�erence in volume between
the two reconstructions, divided by the �rst one. The mean di�erence and standard deviation of the
relative volume were examined, as well as the interclass correlation coe�cient. Shape reproducibility was
calculated as the RMS of the point-surface error. Variable results were found, however the point-surface
errors were placed in a con�dence interval for all muscles.

[Oberhofer et al., 2009] implemented the Host Mesh Fitting (HMF) technique to predict muscle defor-
mation of a subject-speci�c musculoskeletal model during walking. MR scans of the lower body from
a female subject were used for this purpose. Similarly to [Südho� et al., 2009] and [Blemker and Delp,
2005], the validation was aided by examining the shape changes, as the RMS of the di�erences between
the points of the MR image data and their projection on the surface obtained by the HMF method. This
was done for �ve muscles, during a motion from a 15 ◦ knee angle to a 45 ◦ knee angle. The best RMS
error was obtained for the tibialis anterior, at 1.8 mm.

[Vasavada et al., 2008] developed a method to determine wrapping surface parameters for muscle paths
that best approximated the centroid paths of muscles, and applied it on the neck musculature. MRI data
was collected for 18 neck muscles from a single male subject in seven di�erent postures. This data was
used to determine muscle geometry. Centroid path data from a neutral posture was used to characterize
a wrapping surface at each vertebra.

For evaluation, the wrapping parameters from the neutral posture were rotated with the corresponding
vertebral body to correspond to the other di�erent postures. The average distance between the centroid
path and the modeled path was calculated as the sum of distances between the centroid path to the
modeled path at each MRI slice, normalized by muscle length. This represented the error metric. It was
also calculated for straight and centroid paths, to reveal the necessity of the wrapping surface. It was
decided that an error metric for a straight line that was less than 10% of its distance from the centroid
path to the vertebral center made the wrapping surface unnecessary for the respective muscle. Thirteen
out of the eighteen modeled muscles bene�ted from a wrapping surface. Also, it was found that, for the
semispinalis capitis muscles, all postures bene�ted in a considerable manner from the the use of wrapping
surfaces.
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Most recently, [Suderman and Vasavada, 2012] modeled the curved muscle paths in the cervical spine
accounting for soft tissue deformation determined by posture changes. For this, they used moving muscle
points (MMP), which could move with respect to the body segment to which the point was linked, thus
allowing for muscle paths to bend according to surrounding deformable soft tissue. MRI scans were
collected for 15 muscle pairs, from two male subjects, in �ve �exion-extension postures. From this data,
muscle paths were modeled using MMP.

In the evaluation phase, the results from [Vasavada et al., 2008] were used for comparison. The error
metric represented the average distance between modeled muscle path and the smoothed centroid path.
Also, in this case the curved paths were compared to the straight path, and a percentage of improvement
was calculated for each muscle as the di�erence between the error metric for the straight path and the
error metric for the curved path, divided by the �rst. A statistical analysis was run using the repeated
measures one-way ANOVA. Results showed that paths produced by MMP closely followed the centroid
paths for all postures, and showed better results than other two tested methods - �xed via point method
and straight line paths.

8.2 Skin

[Park and Hodgins, 2006] presented a data-driven approach to capture the �ne details of the human
body surface during movement, by using around 350 markers placed on muscular parts of the body, to
obtain both the motion of the skeleton and that of the skin. They extracted the rigid body motion and
computed local deformations of a subject-speci�c polygonal model using the marker set information.
Evaluation was purely visual based and found better results than two other methods: rigid deformation
and quadratic deformation without resolving residuals. This work represented the base for [Park and
Hodgins, 2008] who used the previous data as ground truth in an automatic evaluation procedure.

[Park and Hodgins, 2008] simpli�ed the work previously required to record the motion capture data. They
used previous data to statistically derive static and dynamic deformation models. Static deformation were
formulated as pose functions, while dynamic deformations were obtained by �tting dynamic equations to
pre-recorded data to model the e�ects of muscles moving the joints and of muscles and fat inertia. These
models were applied to skeletal body motion captured using a number of 40-50 markers, thus obtaining
a virtual character that depicted skin deformations during movement.

Learning static and dynamic deformation was aided by two di�erent databases. The static one contained
the slower versions of the motions from the dynamic one. For evaluation, a dynamic model was built on
top of the static database, and then the motion was reconstructed. Reconstruction errors were measured
as comparisons between original markers positions and simulated marker positions (in millimeters per
frame). The dynamic deformation over time was evaluated as the comparison between the original PCA
component of dynamic deformation and the simulated one. They found that the results were well matched
on an overall level to the original motion. Synthesized results were similarly compared to ground truth
data.

[Bickel et al., 2008] focused on facial details and developed a technique that combined computational and
data-driven approaches to transfer �ne-scale details to novel facial animations. They decomposed facial
geometry into large-scale motion - using a linear shell deformation model obtained through a sparse set
of markers or handle points de�ned by the user - and �ne-scale details learned from a set of example
poses. The learning was done through a novel pose-space deformation technique. Then, the technique
computed the �ne-scale details for new facial expressions.

For evaluation, the performance of an actor captured with high-resolution surface details was divided
in two halves, the �rst used as training data and the second as ground-truth data. Comparison of the
implemented method with ground-truth data was done based on the L2 error (in millimeters).



9 | Conclusions

We have seen in this review that virtual character assessment is starting to take shape. We have addressed
a number of papers that focused on evaluating motion naturalness, perceptual plausibility, comparing
behavior in crowds or put forward uni�ed frameworks to compare di�erent methods (for steering and
motion tracking). Although a di�cult task, due to di�erent models and representations, automatic
assessment is taking steps forward.

While user studies will probably still remain a reliable validation method for a long time, the tendency
now is to use them as complementary to an automatic sort of validation, which highliths the correlation
between what humans perceive to be natural or correct and what mathematical and physical laws deter-
mine to be so. However, there is still one strong advantage of user studies, namely that they can draw
attention to the algorithms' weaknesses.

We have also seen a number of papers that do not concern virtual character animation directly, for
example the ones discussed in 6.2. Although these papers referred to measuring kinematical parameters
and assessing the precision of their �ndings, the evaluation metrics (such as the root mean square error
for joint angles) could be (and already have been) used in applications such as controlling a virtual
character in real time with the aid of a suit of sensors. In this case the �delity of the characters' motion
corresponding to the user's was assessed.

Even though it is not always possible to propose a straightforward metric to assess motion, the works
which o�er guidelines based on perceptual studies proved to have real applicability for subsequent re-
search. We can therefore distinguish that virtual character assessment is currently approached in two
ways: either by proposing evaluation metrics and procedures against other methods or ground truth
data or by observing thresholds and patterns to bring up guidelines for developers who want to achieve
a speci�c tradeo� between naturalness and computational requirements.

In the closing of this review, we o�er a very brief summary of metrics and guidelines covering most of
the chapters we discussed, in the following table.
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Table 9.1: Literature Review Summary

Chapter Reference Short Description

Motion
Naturalness

[Ren et al., 2005]

naturalness measure based on ensemble statistical models for
natural motion

si = logP (D|θi)
T

s = mini

(
(si−µi)
σi

)
[McDonnell et al.,
2005]

1.164 : 1 pixel to texel ratio at which impostors become dis-
tinguishable

Behavior in
Crowds

[Lerner et al., 2009] density based measure for crowd comparison

[Guy et al.] entropy metric for crowd comparison

[Musse et al., 2012] used 4d histograms to compare global �ows, spatial occupancy,
agents' density and orientation distribution

Style [Vasilescu, 2002] mapped motions into the space of people parameters or the
space of action parameters to recognize the person performing
or the action performed

Kinematics

[Lee et al., 2002]
transition probability between two frames as exponential func-
tion of the distance Dij

Dij = d (pi, pj) + νd (vi, vj)

[O'Donovan et al.,
2007]

compared angle joint measurements to ground-truth data using
RMSE

RMSE =

√
1/T

∑T
k=1

(
φ (k)

S − φ (k)
E
)2

[Chai and Hodgins,
2005]

compared performance animation with ground-truth data us-
ing the L2 error in degrees per joint angle

[Sminchisescu et al.,
2005]

compared video based reconstructed motion with ground-truth
data using the RMSE in degrees per joint angle

[Sigal and Black, 2006]
comparison measure for motion tracking algorithms based on
sparse set of virtual markers, in millimeters

D
(
X, X̂, ∆̂

)
=
∑M
m=1

δ̂m‖xm−x̂m‖∑M
i=1 δ̂i

Physics

[Multon et al., 2007] compared the angular momentum trajectories to physically
validate retargeted motion

[Shum et al., 2009] compared the angular momentum trajectories to physically
validate concatenated motions

[Geijtenbeek et al.,
2010]

dynamic error measure and muscle error measure for muscu-
loskeletal models

Soft Tissue
Simulation

[Arnold et al., 2000] muscle reconstruction error equal to the average of the absolute
di�erence between the moment arms, in millimeters

[Blemker and Delp,
2005]

RMSE across point of muscle surfaces from MRI and their
projections on simulated muscle model

[Park and Hodgins,
2008]

skin reconstruction errors as comparisons between original
markers positions and simulated marker positions (in millime-
ters per frame)

[Bickel et al., 2008] compared facial details based on L2 error in millimiters
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